| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | nncn | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℂ ) | 
						
							| 4 |  | nnne0 | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ≠  0 ) | 
						
							| 5 | 3 4 | jca | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) ) | 
						
							| 6 |  | divdir | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) )  →  ( ( 𝐴  +  𝐵 )  /  𝐷 )  =  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) ) ) | 
						
							| 7 | 1 2 5 6 | syl3an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ( ( 𝐴  +  𝐵 )  /  𝐷 )  =  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) ) ) | 
						
							| 8 | 7 | 3comr | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  /  𝐷 )  =  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( 𝐴  /  𝐷 )  ∈  ℤ  ∧  ( 𝐵  /  𝐷 )  ∈  ℤ ) )  →  ( ( 𝐴  +  𝐵 )  /  𝐷 )  =  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) ) ) | 
						
							| 10 |  | zaddcl | ⊢ ( ( ( 𝐴  /  𝐷 )  ∈  ℤ  ∧  ( 𝐵  /  𝐷 )  ∈  ℤ )  →  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) )  ∈  ℤ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( 𝐴  /  𝐷 )  ∈  ℤ  ∧  ( 𝐵  /  𝐷 )  ∈  ℤ ) )  →  ( ( 𝐴  /  𝐷 )  +  ( 𝐵  /  𝐷 ) )  ∈  ℤ ) | 
						
							| 12 | 9 11 | eqeltrd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( 𝐴  /  𝐷 )  ∈  ℤ  ∧  ( 𝐵  /  𝐷 )  ∈  ℤ ) )  →  ( ( 𝐴  +  𝐵 )  /  𝐷 )  ∈  ℤ ) |