Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
2 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
3 |
|
nncn |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) |
4 |
|
nnne0 |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ≠ 0 ) |
5 |
3 4
|
jca |
⊢ ( 𝐷 ∈ ℕ → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
6 |
|
divdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
7 |
1 2 5 6
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
8 |
7
|
3comr |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
10 |
|
zaddcl |
⊢ ( ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) → ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ∈ ℤ ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ∈ ℤ ) |
12 |
9 11
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) ∈ ℤ ) |