Metamath Proof Explorer


Theorem zeo2ALTV

Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015) (Revised by AV, 16-Jun-2020)

Ref Expression
Assertion zeo2ALTV ( 𝑍 ∈ ℤ → ( 𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd ) )

Proof

Step Hyp Ref Expression
1 evennodd ( 𝑍 ∈ Even → ¬ 𝑍 ∈ Odd )
2 zeoALTV ( 𝑍 ∈ ℤ → ( 𝑍 ∈ Even ∨ 𝑍 ∈ Odd ) )
3 ax-1 ( 𝑍 ∈ Even → ( ¬ 𝑍 ∈ Odd → 𝑍 ∈ Even ) )
4 pm2.24 ( 𝑍 ∈ Odd → ( ¬ 𝑍 ∈ Odd → 𝑍 ∈ Even ) )
5 3 4 jaoi ( ( 𝑍 ∈ Even ∨ 𝑍 ∈ Odd ) → ( ¬ 𝑍 ∈ Odd → 𝑍 ∈ Even ) )
6 2 5 syl ( 𝑍 ∈ ℤ → ( ¬ 𝑍 ∈ Odd → 𝑍 ∈ Even ) )
7 1 6 impbid2 ( 𝑍 ∈ ℤ → ( 𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd ) )