Metamath Proof Explorer


Theorem zeo5

Description: An integer is either even or odd, version of zeo3 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020)

Ref Expression
Assertion zeo5 ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ∨ 2 ∥ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 zeo3 ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁 ) )
2 oddp1even ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 + 1 ) ) )
3 2 bicomd ( 𝑁 ∈ ℤ → ( 2 ∥ ( 𝑁 + 1 ) ↔ ¬ 2 ∥ 𝑁 ) )
4 3 orbi2d ( 𝑁 ∈ ℤ → ( ( 2 ∥ 𝑁 ∨ 2 ∥ ( 𝑁 + 1 ) ) ↔ ( 2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁 ) ) )
5 1 4 mpbird ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ∨ 2 ∥ ( 𝑁 + 1 ) ) )