Step |
Hyp |
Ref |
Expression |
1 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
2 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
3 |
2
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
4 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
5 |
|
divides |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
7 |
|
eqcom |
⊢ ( ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) |
8 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
9 |
8
|
rexbidv |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
11 |
6 10
|
sylbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
12 |
11
|
adantrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
13 |
1 12
|
mpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) |