Step |
Hyp |
Ref |
Expression |
1 |
|
zerdivempx.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
zerdivempx.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
zerdivempx.3 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
4 |
|
zerdivempx.4 |
⊢ 𝑋 = ran 𝐺 |
5 |
|
zerdivempx.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
6 |
|
oveq2 |
⊢ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑅 ∈ RingOps ) |
8 |
|
simpr1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) |
9 |
|
simpr3 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
11 |
1 2 4
|
rngoass |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ) |
12 |
7 8 9 10 11
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ) |
13 |
|
eqtr |
⊢ ( ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) |
14 |
13
|
ex |
⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) ) |
15 |
|
eqtr |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) ∧ ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) → ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) |
16 |
3 4 1 2
|
rngorz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) |
18 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
19 |
4 18
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
20 |
2 19 5
|
rngolidm |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) |
21 |
20
|
3adant2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) |
22 |
|
simp1 |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) |
23 |
|
simp2 |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) |
24 |
|
simp3 |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) |
25 |
22 23 24
|
3eqtr3d |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → 𝐵 = 𝑍 ) |
26 |
25
|
a1d |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝐴 ∈ 𝑋 → 𝐵 = 𝑍 ) ) |
27 |
26
|
3exp |
⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( 𝐴 ∈ 𝑋 → 𝐵 = 𝑍 ) ) ) ) |
28 |
27
|
com14 |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) |
29 |
28
|
com13 |
⊢ ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) |
30 |
17 21 29
|
sylc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) |
31 |
30
|
3exp |
⊢ ( 𝑅 ∈ RingOps → ( 𝑎 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) ) |
32 |
31
|
com15 |
⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑎 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
33 |
32
|
com24 |
⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
34 |
15 33
|
syl |
⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) ∧ ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
35 |
34
|
ex |
⊢ ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
36 |
35
|
eqcoms |
⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
37 |
36
|
com25 |
⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) → ( 𝑎 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
38 |
|
oveq1 |
⊢ ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) ) |
39 |
37 38
|
syl11 |
⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
40 |
39
|
3imp |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) |
41 |
40
|
com13 |
⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) |
42 |
14 41
|
syl6 |
⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
43 |
42
|
com15 |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → 𝐵 = 𝑍 ) ) ) ) ) |
44 |
43
|
3imp1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → 𝐵 = 𝑍 ) ) |
45 |
12 44
|
mpd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐵 = 𝑍 ) |
46 |
45
|
3exp1 |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 = 𝑍 ) ) ) ) |
47 |
6 46
|
syl5com |
⊢ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 = 𝑍 ) ) ) ) |
48 |
47
|
com14 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) |
49 |
48
|
3exp |
⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) ) |
50 |
49
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) |
51 |
50
|
com13 |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) |
52 |
51
|
3imp |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) |