| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | initoval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | initoval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 |  | df-zeroo | ⊢ ZeroO  =  ( 𝑐  ∈  Cat  ↦  ( ( InitO ‘ 𝑐 )  ∩  ( TermO ‘ 𝑐 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( InitO ‘ 𝑐 )  =  ( InitO ‘ 𝐶 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( TermO ‘ 𝑐 )  =  ( TermO ‘ 𝐶 ) ) | 
						
							| 7 | 5 6 | ineq12d | ⊢ ( 𝑐  =  𝐶  →  ( ( InitO ‘ 𝑐 )  ∩  ( TermO ‘ 𝑐 ) )  =  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) ) ) | 
						
							| 8 |  | fvex | ⊢ ( InitO ‘ 𝐶 )  ∈  V | 
						
							| 9 | 8 | inex1 | ⊢ ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) )  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) )  ∈  V ) | 
						
							| 11 | 4 7 1 10 | fvmptd3 | ⊢ ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) ) ) |