Metamath Proof Explorer


Theorem zexALT

Description: Alternate proof of zex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zexALT ℤ ∈ V

Proof

Step Hyp Ref Expression
1 dfz2 ℤ = ( − “ ( ℕ × ℕ ) )
2 subf − : ( ℂ × ℂ ) ⟶ ℂ
3 ffun ( − : ( ℂ × ℂ ) ⟶ ℂ → Fun − )
4 nnexALT ℕ ∈ V
5 4 4 xpex ( ℕ × ℕ ) ∈ V
6 5 funimaex ( Fun − → ( − “ ( ℕ × ℕ ) ) ∈ V )
7 2 3 6 mp2b ( − “ ( ℕ × ℕ ) ) ∈ V
8 1 7 eqeltri ℤ ∈ V