| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-ac |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ) |
| 2 |
|
equequ2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑤 ) ) |
| 3 |
2
|
bibi2d |
⊢ ( 𝑣 = 𝑤 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ) ) |
| 4 |
|
elequ2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑤 ) ) |
| 5 |
4
|
anbi2d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 6 |
|
elequ2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑤 ) ) |
| 7 |
|
elequ1 |
⊢ ( 𝑡 = 𝑤 → ( 𝑡 ∈ 𝑥 ↔ 𝑤 ∈ 𝑥 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ↔ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 9 |
5 8
|
anbi12d |
⊢ ( 𝑡 = 𝑤 → ( ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 10 |
9
|
cbvexvw |
⊢ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 11 |
10
|
bibi1i |
⊢ ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ) |
| 12 |
3 11
|
bitrdi |
⊢ ( 𝑣 = 𝑤 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ) ) |
| 13 |
12
|
albidv |
⊢ ( 𝑣 = 𝑤 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ) ) |
| 14 |
|
elequ1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 15 |
14
|
anbi1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 16 |
|
elequ1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 17 |
16
|
anbi1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 18 |
15 17
|
anbi12d |
⊢ ( 𝑢 = 𝑦 → ( ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 19 |
18
|
exbidv |
⊢ ( 𝑢 = 𝑦 → ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 20 |
|
equequ1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 21 |
19 20
|
bibi12d |
⊢ ( 𝑢 = 𝑦 → ( ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 22 |
21
|
cbvalvw |
⊢ ( ∀ 𝑢 ( ∃ 𝑤 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 23 |
13 22
|
bitrdi |
⊢ ( 𝑣 = 𝑤 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 24 |
23
|
cbvexvw |
⊢ ( ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 25 |
24
|
imbi2i |
⊢ ( ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 26 |
25
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 27 |
26
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 28 |
1 27
|
mpbi |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |