Metamath Proof Explorer


Theorem zfauscl

Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep , we invoke the Axiom of Extensionality (indirectly via vtocl ), which is needed for the justification of class variable notation.

If we omit the requirement that y not occur in ph , we can derive a contradiction, as notzfaus shows. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis zfauscl.1 𝐴 ∈ V
Assertion zfauscl 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 zfauscl.1 𝐴 ∈ V
2 eleq2 ( 𝑧 = 𝐴 → ( 𝑥𝑧𝑥𝐴 ) )
3 2 anbi1d ( 𝑧 = 𝐴 → ( ( 𝑥𝑧𝜑 ) ↔ ( 𝑥𝐴𝜑 ) ) )
4 3 bibi2d ( 𝑧 = 𝐴 → ( ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
5 4 albidv ( 𝑧 = 𝐴 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
6 5 exbidv ( 𝑧 = 𝐴 → ( ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
7 ax-sep 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )
8 1 6 7 vtocl 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )