Step |
Hyp |
Ref |
Expression |
1 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
2 |
|
frn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) |
3 |
1 2
|
ax-mp |
⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
4 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
5 |
1 4
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ ) |
8 |
5 6 7
|
mp2an |
⊢ ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ |
9 |
8
|
ne0ii |
⊢ ran ℤ≥ ≠ ∅ |
10 |
|
uzid |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ( ℤ≥ ‘ 𝑥 ) ) |
11 |
|
n0i |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑥 ) → ¬ ( ℤ≥ ‘ 𝑥 ) = ∅ ) |
12 |
10 11
|
syl |
⊢ ( 𝑥 ∈ ℤ → ¬ ( ℤ≥ ‘ 𝑥 ) = ∅ ) |
13 |
12
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ |
14 |
|
fvelrnb |
⊢ ( ℤ≥ Fn ℤ → ( ∅ ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ ) ) |
15 |
5 14
|
ax-mp |
⊢ ( ∅ ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ ) |
16 |
13 15
|
mtbir |
⊢ ¬ ∅ ∈ ran ℤ≥ |
17 |
16
|
nelir |
⊢ ∅ ∉ ran ℤ≥ |
18 |
|
uzin2 |
⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
19
|
inex1 |
⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
21 |
20
|
pwid |
⊢ ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) |
22 |
|
inelcm |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ∧ ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) → ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
23 |
18 21 22
|
sylancl |
⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
24 |
23
|
rgen2 |
⊢ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ |
25 |
9 17 24
|
3pm3.2i |
⊢ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
26 |
|
zex |
⊢ ℤ ∈ V |
27 |
|
isfbas |
⊢ ( ℤ ∈ V → ( ran ℤ≥ ∈ ( fBas ‘ ℤ ) ↔ ( ran ℤ≥ ⊆ 𝒫 ℤ ∧ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ran ℤ≥ ∈ ( fBas ‘ ℤ ) ↔ ( ran ℤ≥ ⊆ 𝒫 ℤ ∧ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
29 |
3 25 28
|
mpbir2an |
⊢ ran ℤ≥ ∈ ( fBas ‘ ℤ ) |