Step |
Hyp |
Ref |
Expression |
1 |
|
axacnd |
⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
2 |
|
19.3v |
⊢ ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
3 |
2
|
imbi1i |
⊢ ( ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
4 |
3
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
6 |
1 5
|
mpbi |
⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
7 |
|
equequ2 |
⊢ ( 𝑣 = 𝑥 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑥 ) ) |
8 |
7
|
bibi2d |
⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
9 |
|
elequ2 |
⊢ ( 𝑡 = 𝑥 → ( 𝑤 ∈ 𝑡 ↔ 𝑤 ∈ 𝑥 ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ↔ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
11 |
|
elequ2 |
⊢ ( 𝑡 = 𝑥 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑥 ) ) |
12 |
|
elequ1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ↔ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
15 |
14
|
cbvexvw |
⊢ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
16 |
15
|
bibi1i |
⊢ ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) |
17 |
8 16
|
bitrdi |
⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
18 |
17
|
albidv |
⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
19 |
|
elequ1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
20 |
19
|
anbi1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
21 |
|
elequ1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
22 |
21
|
anbi1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
24 |
23
|
exbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
25 |
|
equequ1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑥 ↔ 𝑧 = 𝑥 ) ) |
26 |
24 25
|
bibi12d |
⊢ ( 𝑢 = 𝑧 → ( ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
27 |
26
|
cbvalvw |
⊢ ( ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
28 |
18 27
|
bitrdi |
⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
29 |
28
|
cbvexvw |
⊢ ( ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
30 |
29
|
imbi2i |
⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
31 |
30
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
32 |
31
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
33 |
6 32
|
mpbir |
⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |