| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axacnd | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) | 
						
							| 2 |  | 19.3v | ⊢ ( ∀ 𝑦 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ↔  ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( ∀ 𝑦 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 4 | 3 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) )  ↔  ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) )  ↔  ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 6 | 1 5 | mpbi | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) | 
						
							| 7 |  | equequ2 | ⊢ ( 𝑣  =  𝑥  →  ( 𝑢  =  𝑣  ↔  𝑢  =  𝑥 ) ) | 
						
							| 8 | 7 | bibi2d | ⊢ ( 𝑣  =  𝑥  →  ( ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 )  ↔  ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 ) ) ) | 
						
							| 9 |  | elequ2 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑤  ∈  𝑡  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ↔  ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) ) | 
						
							| 11 |  | elequ2 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑢  ∈  𝑡  ↔  𝑢  ∈  𝑥 ) ) | 
						
							| 12 |  | elequ1 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 )  ↔  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) | 
						
							| 14 | 10 13 | anbi12d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) ) | 
						
							| 15 | 14 | cbvexvw | ⊢ ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) | 
						
							| 16 | 15 | bibi1i | ⊢ ( ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 )  ↔  ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 ) ) | 
						
							| 17 | 8 16 | bitrdi | ⊢ ( 𝑣  =  𝑥  →  ( ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 )  ↔  ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 ) ) ) | 
						
							| 18 | 17 | albidv | ⊢ ( 𝑣  =  𝑥  →  ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 )  ↔  ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 ) ) ) | 
						
							| 19 |  | elequ1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  ∈  𝑤  ↔  𝑧  ∈  𝑤 ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( 𝑢  =  𝑧  →  ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ↔  ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) ) | 
						
							| 21 |  | elequ1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 22 | 21 | anbi1d | ⊢ ( 𝑢  =  𝑧  →  ( ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( 𝑢  =  𝑧  →  ( ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) ) | 
						
							| 24 | 23 | exbidv | ⊢ ( 𝑢  =  𝑧  →  ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) ) ) ) | 
						
							| 25 |  | equequ1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  =  𝑥  ↔  𝑧  =  𝑥 ) ) | 
						
							| 26 | 24 25 | bibi12d | ⊢ ( 𝑢  =  𝑧  →  ( ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 )  ↔  ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 27 | 26 | cbvalvw | ⊢ ( ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑢  =  𝑥 )  ↔  ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) | 
						
							| 28 | 18 27 | bitrdi | ⊢ ( 𝑣  =  𝑥  →  ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 )  ↔  ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 29 | 28 | cbvexvw | ⊢ ( ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 )  ↔  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) | 
						
							| 30 | 29 | imbi2i | ⊢ ( ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 ) )  ↔  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 31 | 30 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 ) )  ↔  ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 32 | 31 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 ) )  ↔  ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 33 | 6 32 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢  ∈  𝑤  ∧  𝑤  ∈  𝑡 )  ∧  ( 𝑢  ∈  𝑡  ∧  𝑡  ∈  𝑦 ) )  ↔  𝑢  =  𝑣 ) ) |