Step |
Hyp |
Ref |
Expression |
1 |
|
el |
⊢ ∃ 𝑤 𝑥 ∈ 𝑤 |
2 |
|
nfv |
⊢ Ⅎ 𝑤 𝑥 ∈ 𝑦 |
3 |
|
nfe1 |
⊢ Ⅎ 𝑤 ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) |
4 |
2 3
|
nfim |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) |
5 |
4
|
nfal |
⊢ Ⅎ 𝑤 ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) |
6 |
2 5
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
7 |
6
|
nfex |
⊢ Ⅎ 𝑤 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
8 |
|
axinfnd |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑤 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
9 |
8
|
19.37iv |
⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
10 |
7 9
|
exlimi |
⊢ ( ∃ 𝑤 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
11 |
1 10
|
ax-mp |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
12 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
13 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤 ) ) |
14 |
13
|
anbi1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
15 |
14
|
exbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
16 |
12 15
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
17 |
16
|
cbvalvw |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
19 |
18
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
20 |
11 19
|
mpbir |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |