Metamath Proof Explorer


Theorem zfcndinf

Description: Axiom of Infinity ax-inf , reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing Theorem el in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003)

Ref Expression
Assertion zfcndinf 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 el 𝑤 𝑥𝑤
2 nfv 𝑤 𝑥𝑦
3 nfe1 𝑤𝑤 ( 𝑥𝑤𝑤𝑦 )
4 2 3 nfim 𝑤 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) )
5 4 nfal 𝑤𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) )
6 2 5 nfan 𝑤 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) )
7 6 nfex 𝑤𝑦 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) )
8 axinfnd 𝑦 ( 𝑥𝑤 → ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
9 8 19.37iv ( 𝑥𝑤 → ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
10 7 9 exlimi ( ∃ 𝑤 𝑥𝑤 → ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
11 1 10 ax-mp 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) )
12 elequ1 ( 𝑧 = 𝑥 → ( 𝑧𝑦𝑥𝑦 ) )
13 elequ1 ( 𝑧 = 𝑥 → ( 𝑧𝑤𝑥𝑤 ) )
14 13 anbi1d ( 𝑧 = 𝑥 → ( ( 𝑧𝑤𝑤𝑦 ) ↔ ( 𝑥𝑤𝑤𝑦 ) ) )
15 14 exbidv ( 𝑧 = 𝑥 → ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ↔ ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) )
16 12 15 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) ↔ ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
17 16 cbvalvw ( ∀ 𝑧 ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) ↔ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) )
18 17 anbi2i ( ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
19 18 exbii ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑤 ( 𝑥𝑤𝑤𝑦 ) ) ) )
20 11 19 mpbir 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑦 → ∃ 𝑤 ( 𝑧𝑤𝑤𝑦 ) ) )