| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝑤 |
| 3 |
|
nfv |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝑥 |
| 4 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∀ 𝑦 𝜑 |
| 5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) |
| 6 |
5
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) |
| 7 |
2 6
|
nfbi |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 8 |
7
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 9 |
1 8
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 10 |
9
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 11 |
|
elequ2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑥 ) ) |
| 12 |
11
|
anbi1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 13 |
12
|
exbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 14 |
13
|
bibi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 15 |
14
|
albidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) ) |
| 17 |
16
|
exbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) ) |
| 18 |
|
axrepnd |
⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 19 |
|
19.3v |
⊢ ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) |
| 20 |
|
19.3v |
⊢ ( ∀ 𝑧 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) |
| 21 |
20
|
anbi1i |
⊢ ( ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 22 |
21
|
exbii |
⊢ ( ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 23 |
19 22
|
bibi12i |
⊢ ( ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 24 |
23
|
albii |
⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 25 |
24
|
imbi2i |
⊢ ( ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 26 |
25
|
exbii |
⊢ ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 27 |
18 26
|
mpbi |
⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 28 |
10 17 27
|
chvar |
⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 29 |
28
|
19.35i |
⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 30 |
|
nfv |
⊢ Ⅎ 𝑤 𝑧 ∈ 𝑦 |
| 31 |
|
nfe1 |
⊢ Ⅎ 𝑤 ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) |
| 32 |
30 31
|
nfbi |
⊢ Ⅎ 𝑤 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 33 |
32
|
nfal |
⊢ Ⅎ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 34 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ) |
| 35 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 |
| 36 |
35
|
19.3 |
⊢ ( ∀ 𝑦 ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜑 ) |
| 37 |
36
|
anbi2i |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 38 |
37
|
exbii |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 39 |
38
|
a1i |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 40 |
34 39
|
bibi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 41 |
40
|
albidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 42 |
8 33 41
|
cbvexv1 |
⊢ ( ∃ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 43 |
29 42
|
sylib |
⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |