Step |
Hyp |
Ref |
Expression |
1 |
|
axunnd |
⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |
2 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ) |
3 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
5 |
4
|
cbvexvw |
⊢ ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
9 |
1 8
|
mpbir |
⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |