Step |
Hyp |
Ref |
Expression |
1 |
|
ax-inf |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
2 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
3 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
6 |
2 5
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
7 |
6
|
cbvalvw |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
10 |
1 9
|
mpbi |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |