Metamath Proof Explorer


Theorem zfinf

Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003)

Ref Expression
Assertion zfinf 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ax-inf 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) )
2 elequ1 ( 𝑤 = 𝑦 → ( 𝑤𝑥𝑦𝑥 ) )
3 elequ1 ( 𝑤 = 𝑦 → ( 𝑤𝑧𝑦𝑧 ) )
4 3 anbi1d ( 𝑤 = 𝑦 → ( ( 𝑤𝑧𝑧𝑥 ) ↔ ( 𝑦𝑧𝑧𝑥 ) ) )
5 4 exbidv ( 𝑤 = 𝑦 → ( ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ↔ ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
6 2 5 imbi12d ( 𝑤 = 𝑦 → ( ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
7 6 cbvalvw ( ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
8 7 anbi2i ( ( 𝑦𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
9 8 exbii ( ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
10 1 9 mpbi 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )