Step |
Hyp |
Ref |
Expression |
1 |
|
ax-inf2 |
⊢ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
2 |
|
0el |
⊢ ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) |
4 |
2 3
|
bitri |
⊢ ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) |
5 |
|
sucel |
⊢ ( suc 𝑦 ∈ 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) |
6 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
7 |
5 6
|
bitri |
⊢ ( suc 𝑦 ∈ 𝑥 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
11 |
4 10
|
anbi12i |
⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
13 |
1 12
|
mpbir |
⊢ ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) |