Metamath Proof Explorer


Theorem zfinf2

Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of BellMachover p. 472. (See ax-inf2 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993)

Ref Expression
Assertion zfinf2 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 suc 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 ax-inf2 𝑥 ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )
2 0el ( ∅ ∈ 𝑥 ↔ ∃ 𝑦𝑥𝑧 ¬ 𝑧𝑦 )
3 df-rex ( ∃ 𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) )
4 2 3 bitri ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) )
5 sucel ( suc 𝑦𝑥 ↔ ∃ 𝑧𝑥𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) )
6 df-rex ( ∃ 𝑧𝑥𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) )
7 5 6 bitri ( suc 𝑦𝑥 ↔ ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) )
8 7 ralbii ( ∀ 𝑦𝑥 suc 𝑦𝑥 ↔ ∀ 𝑦𝑥𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) )
9 df-ral ( ∀ 𝑦𝑥𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )
10 8 9 bitri ( ∀ 𝑦𝑥 suc 𝑦𝑥 ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )
11 4 10 anbi12i ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 suc 𝑦𝑥 ) ↔ ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) ) )
12 11 exbii ( ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 suc 𝑦𝑥 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) ) )
13 1 12 mpbir 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 suc 𝑦𝑥 )