Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of TakeutiZaring p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.
This theorem should not be referenced by any proof other than axprALT . Instead, use zfpair2 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | zfpair | ⊢ { 𝑥 , 𝑦 } ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 | ⊢ { 𝑥 , 𝑦 } = { 𝑤 ∣ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) } | |
2 | 19.43 | ⊢ ( ∃ 𝑧 ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) | |
3 | prlem2 | ⊢ ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) ) | |
4 | 3 | exbii | ⊢ ( ∃ 𝑧 ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) ) |
5 | 0ex | ⊢ ∅ ∈ V | |
6 | 5 | isseti | ⊢ ∃ 𝑧 𝑧 = ∅ |
7 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ↔ ( ∃ 𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ) | |
8 | 6 7 | mpbiran | ⊢ ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ↔ 𝑤 = 𝑥 ) |
9 | p0ex | ⊢ { ∅ } ∈ V | |
10 | 9 | isseti | ⊢ ∃ 𝑧 𝑧 = { ∅ } |
11 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ↔ ( ∃ 𝑧 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) | |
12 | 10 11 | mpbiran | ⊢ ( ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 ) |
13 | 8 12 | orbi12i | ⊢ ( ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
14 | 2 4 13 | 3bitr3ri | ⊢ ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ↔ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) ) |
15 | 14 | abbii | ⊢ { 𝑤 ∣ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) } = { 𝑤 ∣ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) } |
16 | dfpr2 | ⊢ { ∅ , { ∅ } } = { 𝑧 ∣ ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) } | |
17 | pp0ex | ⊢ { ∅ , { ∅ } } ∈ V | |
18 | 16 17 | eqeltrri | ⊢ { 𝑧 ∣ ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) } ∈ V |
19 | equequ2 | ⊢ ( 𝑣 = 𝑥 → ( 𝑤 = 𝑣 ↔ 𝑤 = 𝑥 ) ) | |
20 | 0inp0 | ⊢ ( 𝑧 = ∅ → ¬ 𝑧 = { ∅ } ) | |
21 | 19 20 | prlem1 | ⊢ ( 𝑣 = 𝑥 → ( 𝑧 = ∅ → ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) ) |
22 | 21 | alrimdv | ⊢ ( 𝑣 = 𝑥 → ( 𝑧 = ∅ → ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) ) |
23 | 22 | spimevw | ⊢ ( 𝑧 = ∅ → ∃ 𝑣 ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) |
24 | orcom | ⊢ ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ∨ ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ) ) | |
25 | equequ2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑤 = 𝑣 ↔ 𝑤 = 𝑦 ) ) | |
26 | 20 | con2i | ⊢ ( 𝑧 = { ∅ } → ¬ 𝑧 = ∅ ) |
27 | 25 26 | prlem1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ( ( ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ∨ ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ) → 𝑤 = 𝑣 ) ) ) |
28 | 24 27 | syl7bi | ⊢ ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) ) |
29 | 28 | alrimdv | ⊢ ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) ) |
30 | 29 | spimevw | ⊢ ( 𝑧 = { ∅ } → ∃ 𝑣 ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) |
31 | 23 30 | jaoi | ⊢ ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) → ∃ 𝑣 ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) |
32 | 18 31 | zfrep4 | ⊢ { 𝑤 ∣ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) } ∈ V |
33 | 15 32 | eqeltri | ⊢ { 𝑤 ∣ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) } ∈ V |
34 | 1 33 | eqeltri | ⊢ { 𝑥 , 𝑦 } ∈ V |