Metamath Proof Explorer


Theorem zfpair

Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of TakeutiZaring p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axprALT . Instead, use zfpair2 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion zfpair { 𝑥 , 𝑦 } ∈ V

Proof

Step Hyp Ref Expression
1 dfpr2 { 𝑥 , 𝑦 } = { 𝑤 ∣ ( 𝑤 = 𝑥𝑤 = 𝑦 ) }
2 19.43 ( ∃ 𝑧 ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) )
3 prlem2 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) )
4 3 exbii ( ∃ 𝑧 ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) )
5 0ex ∅ ∈ V
6 5 isseti 𝑧 𝑧 = ∅
7 19.41v ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ↔ ( ∃ 𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) )
8 6 7 mpbiran ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ↔ 𝑤 = 𝑥 )
9 p0ex { ∅ } ∈ V
10 9 isseti 𝑧 𝑧 = { ∅ }
11 19.41v ( ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ↔ ( ∃ 𝑧 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) )
12 10 11 mpbiran ( ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 )
13 8 12 orbi12i ( ( ∃ 𝑧 ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ∃ 𝑧 ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) )
14 2 4 13 3bitr3ri ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) ↔ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) )
15 14 abbii { 𝑤 ∣ ( 𝑤 = 𝑥𝑤 = 𝑦 ) } = { 𝑤 ∣ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) }
16 dfpr2 { ∅ , { ∅ } } = { 𝑧 ∣ ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) }
17 pp0ex { ∅ , { ∅ } } ∈ V
18 16 17 eqeltrri { 𝑧 ∣ ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) } ∈ V
19 equequ2 ( 𝑣 = 𝑥 → ( 𝑤 = 𝑣𝑤 = 𝑥 ) )
20 0inp0 ( 𝑧 = ∅ → ¬ 𝑧 = { ∅ } )
21 19 20 prlem1 ( 𝑣 = 𝑥 → ( 𝑧 = ∅ → ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) )
22 21 alrimdv ( 𝑣 = 𝑥 → ( 𝑧 = ∅ → ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) )
23 22 spimevw ( 𝑧 = ∅ → ∃ 𝑣𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) )
24 orcom ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ↔ ( ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ∨ ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ) )
25 equequ2 ( 𝑣 = 𝑦 → ( 𝑤 = 𝑣𝑤 = 𝑦 ) )
26 20 con2i ( 𝑧 = { ∅ } → ¬ 𝑧 = ∅ )
27 25 26 prlem1 ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ( ( ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ∨ ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ) → 𝑤 = 𝑣 ) ) )
28 24 27 syl7bi ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) )
29 28 alrimdv ( 𝑣 = 𝑦 → ( 𝑧 = { ∅ } → ∀ 𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) ) )
30 29 spimevw ( 𝑧 = { ∅ } → ∃ 𝑣𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) )
31 23 30 jaoi ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) → ∃ 𝑣𝑤 ( ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑣 ) )
32 18 31 zfrep4 { 𝑤 ∣ ∃ 𝑧 ( ( 𝑧 = ∅ ∨ 𝑧 = { ∅ } ) ∧ ( ( 𝑧 = ∅ ∧ 𝑤 = 𝑥 ) ∨ ( 𝑧 = { ∅ } ∧ 𝑤 = 𝑦 ) ) ) } ∈ V
33 15 32 eqeltri { 𝑤 ∣ ( 𝑤 = 𝑥𝑤 = 𝑦 ) } ∈ V
34 1 33 eqeltri { 𝑥 , 𝑦 } ∈ V