Metamath Proof Explorer


Theorem zfpow

Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003)

Ref Expression
Assertion zfpow 𝑥𝑦 ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) → 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 ax-pow 𝑥𝑦 ( ∀ 𝑤 ( 𝑤𝑦𝑤𝑧 ) → 𝑦𝑥 )
2 elequ1 ( 𝑤 = 𝑥 → ( 𝑤𝑦𝑥𝑦 ) )
3 elequ1 ( 𝑤 = 𝑥 → ( 𝑤𝑧𝑥𝑧 ) )
4 2 3 imbi12d ( 𝑤 = 𝑥 → ( ( 𝑤𝑦𝑤𝑧 ) ↔ ( 𝑥𝑦𝑥𝑧 ) ) )
5 4 cbvalvw ( ∀ 𝑤 ( 𝑤𝑦𝑤𝑧 ) ↔ ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) )
6 5 imbi1i ( ( ∀ 𝑤 ( 𝑤𝑦𝑤𝑧 ) → 𝑦𝑥 ) ↔ ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) → 𝑦𝑥 ) )
7 6 albii ( ∀ 𝑦 ( ∀ 𝑤 ( 𝑤𝑦𝑤𝑧 ) → 𝑦𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) → 𝑦𝑥 ) )
8 7 exbii ( ∃ 𝑥𝑦 ( ∀ 𝑤 ( 𝑤𝑦𝑤𝑧 ) → 𝑦𝑥 ) ↔ ∃ 𝑥𝑦 ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) → 𝑦𝑥 ) )
9 1 8 mpbi 𝑥𝑦 ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) → 𝑦𝑥 )