| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴 ) ) |
| 2 |
1
|
exbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 𝑥 ∈ 𝑧 ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
| 3 |
|
eleq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴 ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝑧 = 𝐴 → ( ¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
| 5 |
4
|
ralbidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |
| 6 |
5
|
rexeqbi1dv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |
| 7 |
2 6
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ∃ 𝑥 𝑥 ∈ 𝑧 → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) ) |
| 8 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 |
| 9 |
|
axreg2 |
⊢ ( 𝑥 ∈ 𝑧 → ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ) |
| 10 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) |
| 11 |
10
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) |
| 12 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ) |
| 13 |
11 12
|
bitr2i |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 14 |
9 13
|
sylib |
⊢ ( 𝑥 ∈ 𝑧 → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 15 |
8 14
|
exlimi |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝑧 → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 16 |
7 15
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |