Metamath Proof Explorer


Theorem zfregcl

Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021)

Ref Expression
Assertion zfregcl ( 𝐴𝑉 → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝑧 = 𝐴 → ( 𝑥𝑧𝑥𝐴 ) )
2 1 exbidv ( 𝑧 = 𝐴 → ( ∃ 𝑥 𝑥𝑧 ↔ ∃ 𝑥 𝑥𝐴 ) )
3 eleq2 ( 𝑧 = 𝐴 → ( 𝑦𝑧𝑦𝐴 ) )
4 3 notbid ( 𝑧 = 𝐴 → ( ¬ 𝑦𝑧 ↔ ¬ 𝑦𝐴 ) )
5 4 ralbidv ( 𝑧 = 𝐴 → ( ∀ 𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀ 𝑦𝑥 ¬ 𝑦𝐴 ) )
6 5 rexeqbi1dv ( 𝑧 = 𝐴 → ( ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴 ) )
7 2 6 imbi12d ( 𝑧 = 𝐴 → ( ( ∃ 𝑥 𝑥𝑧 → ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ) ↔ ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴 ) ) )
8 nfre1 𝑥𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧
9 axreg2 ( 𝑥𝑧 → ∃ 𝑥 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) ) )
10 df-ral ( ∀ 𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) )
11 10 rexbii ( ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃ 𝑥𝑧𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) )
12 df-rex ( ∃ 𝑥𝑧𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) ↔ ∃ 𝑥 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) ) )
13 11 12 bitr2i ( ∃ 𝑥 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦𝑧 ) ) ↔ ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 )
14 9 13 sylib ( 𝑥𝑧 → ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 )
15 8 14 exlimi ( ∃ 𝑥 𝑥𝑧 → ∃ 𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 )
16 7 15 vtoclg ( 𝐴𝑉 → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴 ) )