Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfregfr | ⊢ E Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | zfreg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑦 ∩ 𝑥 ) = ∅ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑥 ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑦 ∩ 𝑥 ) = ∅ ) |
| 5 | incom | ⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) | |
| 6 | 5 | eqeq1i | ⊢ ( ( 𝑦 ∩ 𝑥 ) = ∅ ↔ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 ( 𝑦 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 8 | 4 7 | sylib | ⊢ ( 𝑥 ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 10 | 1 9 | mpgbir | ⊢ E Fr 𝐴 |