Step |
Hyp |
Ref |
Expression |
1 |
|
zfregs |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
2 |
|
incom |
⊢ ( 𝑥 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑥 ) |
3 |
2
|
eqeq1i |
⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ( 𝐴 ∩ 𝑥 ) = ∅ ) |
4 |
3
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
5 |
1 4
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
6 |
|
disj1 |
⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
7 |
6
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
8 |
5 7
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
9 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
10 |
9
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
11 |
8 10
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
12 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
14 |
|
notnotb |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
16 |
13 15
|
sylnibr |
⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |