Metamath Proof Explorer
Description: An inference based on the Axiom of Replacement. Typically, ph
defines a function from x to y . (Contributed by NM, 26-Nov-1995)
|
|
Ref |
Expression |
|
Hypotheses |
zfrep3cl.1 |
⊢ 𝐴 ∈ V |
|
|
zfrep3cl.2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
|
Assertion |
zfrep3cl |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zfrep3cl.1 |
⊢ 𝐴 ∈ V |
2 |
|
zfrep3cl.2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
4 |
3 1 2
|
zfrepclf |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |