Step |
Hyp |
Ref |
Expression |
1 |
|
zfrep4.1 |
⊢ { 𝑥 ∣ 𝜑 } ∈ V |
2 |
|
zfrep4.2 |
⊢ ( 𝜑 → ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) |
3 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
6 |
5
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) } |
7 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
8 |
3 2
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) |
9 |
7 1 8
|
zfrepclf |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) |
10 |
|
abeq2 |
⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑧 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) ) |
12 |
9 11
|
mpbir |
⊢ ∃ 𝑧 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } |
13 |
12
|
issetri |
⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ∈ V |
14 |
6 13
|
eqeltrri |
⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) } ∈ V |