| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zfrepclf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
zfrepclf.2 |
⊢ 𝐴 ∈ V |
| 3 |
|
zfrepclf.3 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
| 4 |
1
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑣 = 𝐴 |
| 5 |
|
eleq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝐴 ) ) |
| 6 |
5 3
|
biimtrdi |
⊢ ( 𝑣 = 𝐴 → ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 7 |
4 6
|
alrimi |
⊢ ( 𝑣 = 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 9 |
8
|
axrep5 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑣 = 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ) |
| 11 |
5
|
anbi1d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 12 |
4 11
|
exbid |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 13 |
12
|
bibi2d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 14 |
13
|
albidv |
⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 15 |
14
|
exbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 16 |
10 15
|
mpbid |
⊢ ( 𝑣 = 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 17 |
2 16
|
vtocle |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |