Metamath Proof Explorer


Theorem zfrepclf

Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses zfrepclf.1 𝑥 𝐴
zfrepclf.2 𝐴 ∈ V
zfrepclf.3 ( 𝑥𝐴 → ∃ 𝑧𝑦 ( 𝜑𝑦 = 𝑧 ) )
Assertion zfrepclf 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 zfrepclf.1 𝑥 𝐴
2 zfrepclf.2 𝐴 ∈ V
3 zfrepclf.3 ( 𝑥𝐴 → ∃ 𝑧𝑦 ( 𝜑𝑦 = 𝑧 ) )
4 1 nfeq2 𝑥 𝑣 = 𝐴
5 eleq2 ( 𝑣 = 𝐴 → ( 𝑥𝑣𝑥𝐴 ) )
6 5 3 syl6bi ( 𝑣 = 𝐴 → ( 𝑥𝑣 → ∃ 𝑧𝑦 ( 𝜑𝑦 = 𝑧 ) ) )
7 4 6 alrimi ( 𝑣 = 𝐴 → ∀ 𝑥 ( 𝑥𝑣 → ∃ 𝑧𝑦 ( 𝜑𝑦 = 𝑧 ) ) )
8 nfv 𝑧 𝜑
9 8 axrep5 ( ∀ 𝑥 ( 𝑥𝑣 → ∃ 𝑧𝑦 ( 𝜑𝑦 = 𝑧 ) ) → ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑣𝜑 ) ) )
10 7 9 syl ( 𝑣 = 𝐴 → ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑣𝜑 ) ) )
11 5 anbi1d ( 𝑣 = 𝐴 → ( ( 𝑥𝑣𝜑 ) ↔ ( 𝑥𝐴𝜑 ) ) )
12 4 11 exbid ( 𝑣 = 𝐴 → ( ∃ 𝑥 ( 𝑥𝑣𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) )
13 12 bibi2d ( 𝑣 = 𝐴 → ( ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑣𝜑 ) ) ↔ ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) ) )
14 13 albidv ( 𝑣 = 𝐴 → ( ∀ 𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑣𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) ) )
15 14 exbidv ( 𝑣 = 𝐴 → ( ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑣𝜑 ) ) ↔ ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) ) )
16 10 15 mpbid ( 𝑣 = 𝐴 → ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) )
17 2 16 vtocle 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )