Metamath Proof Explorer


Theorem zfun

Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003) Use ax-un instead. (New usage is discouraged.)

Ref Expression
Assertion zfun 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 ax-un 𝑥𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑥 )
2 elequ2 ( 𝑤 = 𝑥 → ( 𝑦𝑤𝑦𝑥 ) )
3 elequ1 ( 𝑤 = 𝑥 → ( 𝑤𝑧𝑥𝑧 ) )
4 2 3 anbi12d ( 𝑤 = 𝑥 → ( ( 𝑦𝑤𝑤𝑧 ) ↔ ( 𝑦𝑥𝑥𝑧 ) ) )
5 4 cbvexvw ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) ↔ ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) )
6 5 imbi1i ( ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑥 ) ↔ ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
7 6 albii ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑥 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
8 7 exbii ( ∃ 𝑥𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑥 ) ↔ ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
9 1 8 mpbi 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 )