Step |
Hyp |
Ref |
Expression |
1 |
|
ax-un |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |
2 |
|
elequ2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
3 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
5 |
4
|
cbvexvw |
⊢ ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
9 |
1 8
|
mpbi |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |