| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdabs | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( abs ‘ 𝐴 )  gcd  ( abs ‘ 𝐵 ) )  =  ( 𝐴  gcd  𝐵 ) ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  =  ( ( abs ‘ 𝐴 )  gcd  ( abs ‘ 𝐵 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  gcd  ( abs ‘ 𝐵 ) ) ↑ 2 ) ) | 
						
							| 4 |  | nn0abscl | ⊢ ( 𝐴  ∈  ℤ  →  ( abs ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 |  | nn0abscl | ⊢ ( 𝐵  ∈  ℤ  →  ( abs ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 6 |  | nn0gcdsq | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℕ0  ∧  ( abs ‘ 𝐵 )  ∈  ℕ0 )  →  ( ( ( abs ‘ 𝐴 )  gcd  ( abs ‘ 𝐵 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  gcd  ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( abs ‘ 𝐴 )  gcd  ( abs ‘ 𝐵 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  gcd  ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 8 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐴  ∈  ℝ ) | 
						
							| 10 |  | absresq | ⊢ ( 𝐴  ∈  ℝ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 12 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐵  ∈  ℝ ) | 
						
							| 14 |  | absresq | ⊢ ( 𝐵  ∈  ℝ  →  ( ( abs ‘ 𝐵 ) ↑ 2 )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( abs ‘ 𝐵 ) ↑ 2 )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 16 | 11 15 | oveq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  gcd  ( ( abs ‘ 𝐵 ) ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 17 | 3 7 16 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) |