Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼 < ( 𝐴 + 1 ) ) |
2 |
|
zleltp1 |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐼 ≤ 𝐴 ↔ 𝐼 < ( 𝐴 + 1 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → ( 𝐼 ≤ 𝐴 ↔ 𝐼 < ( 𝐴 + 1 ) ) ) |
4 |
1 3
|
mpbird |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼 ≤ 𝐴 ) |
5 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → 𝐴 ≤ 𝐼 ) |
6 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
7 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
8 |
|
letri3 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
11 |
4 5 10
|
mpbir2and |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼 = 𝐴 ) |
12 |
11
|
ex |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 ≤ 𝐼 ∧ 𝐼 < ( 𝐴 + 1 ) ) → 𝐼 = 𝐴 ) ) |