Metamath Proof Explorer


Theorem zgt1rpn0n1

Description: An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion zgt1rpn0n1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )

Proof

Step Hyp Ref Expression
1 eluz2nn ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℕ )
2 1 nnrpd ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℝ+ )
3 eluz2n0 ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ≠ 0 )
4 1nuz2 ¬ 1 ∈ ( ℤ ‘ 2 )
5 nelne2 ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ ¬ 1 ∈ ( ℤ ‘ 2 ) ) → 𝐵 ≠ 1 )
6 4 5 mpan2 ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ≠ 1 )
7 2 3 6 3jca ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )