Description: An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | zgz | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
2 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
3 | 2 | rered | ⊢ ( 𝐴 ∈ ℤ → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
4 | id | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) | |
5 | 3 4 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
6 | 2 | reim0d | ⊢ ( 𝐴 ∈ ℤ → ( ℑ ‘ 𝐴 ) = 0 ) |
7 | 0z | ⊢ 0 ∈ ℤ | |
8 | 6 7 | eqeltrdi | ⊢ ( 𝐴 ∈ ℤ → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
9 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
10 | 1 5 8 9 | syl3anbrc | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] ) |