Step |
Hyp |
Ref |
Expression |
1 |
|
zindbi.1 |
⊢ ( 𝑦 ∈ ℤ → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
zindbi.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
zindbi.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜒 ) ) |
4 |
|
zindbi.4 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜃 ) ) |
5 |
|
zindbi.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
6 4
|
sbcie |
⊢ ( [ 0 / 𝑥 ] 𝜑 ↔ 𝜃 ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
eleq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ∈ ℤ ↔ 0 ∈ ℤ ) ) |
10 |
|
breq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ≤ 𝑏 ↔ 0 ≤ 𝑏 ) ) |
11 |
9 10
|
3anbi13d |
⊢ ( 𝑦 = 0 → ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) ↔ ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ) ) |
12 |
|
dfsbcq |
⊢ ( 𝑦 = 0 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
13 |
12
|
bibi1d |
⊢ ( 𝑦 = 0 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
16 |
|
breq2 |
⊢ ( 𝑏 = 𝐴 → ( 0 ≤ 𝑏 ↔ 0 ≤ 𝐴 ) ) |
17 |
15 16
|
3anbi23d |
⊢ ( 𝑏 = 𝐴 → ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ↔ ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
18 |
|
dfsbcq |
⊢ ( 𝑏 = 𝐴 → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
19 |
18
|
bibi2d |
⊢ ( 𝑏 = 𝐴 → ( ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) ) |
21 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑦 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
22 |
21
|
bibi2d |
⊢ ( 𝑎 = 𝑦 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
23 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑏 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
24 |
23
|
bibi2d |
⊢ ( 𝑎 = 𝑏 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
25 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
26 |
25
|
bibi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
27 |
|
biidd |
⊢ ( 𝑦 ∈ ℤ → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
28 |
|
vex |
⊢ 𝑦 ∈ V |
29 |
28 2
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
30 |
|
dfsbcq |
⊢ ( 𝑦 = 𝑏 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
31 |
29 30
|
bitr3id |
⊢ ( 𝑦 = 𝑏 → ( 𝜓 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
32 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
33 |
32 3
|
sbcie |
⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜒 ) |
34 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 + 1 ) = ( 𝑏 + 1 ) ) |
35 |
34
|
sbceq1d |
⊢ ( 𝑦 = 𝑏 → ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
36 |
33 35
|
bitr3id |
⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
37 |
31 36
|
bibi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝜓 ↔ 𝜒 ) ↔ ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
38 |
37 1
|
vtoclga |
⊢ ( 𝑏 ∈ ℤ → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
40 |
39
|
bibi2d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
41 |
40
|
biimpd |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
42 |
22 24 26 24 27 41
|
uzind |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
43 |
14 20 42
|
vtocl2g |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
44 |
43
|
3adant3 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
45 |
44
|
pm2.43i |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
46 |
8 45
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
47 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
48 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≤ 𝑏 ↔ 𝐴 ≤ 𝑏 ) ) |
49 |
47 48
|
3anbi13d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) ) ) |
50 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
51 |
50
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
52 |
49 51
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) ) |
53 |
|
eleq1 |
⊢ ( 𝑏 = 0 → ( 𝑏 ∈ ℤ ↔ 0 ∈ ℤ ) ) |
54 |
|
breq2 |
⊢ ( 𝑏 = 0 → ( 𝐴 ≤ 𝑏 ↔ 𝐴 ≤ 0 ) ) |
55 |
53 54
|
3anbi23d |
⊢ ( 𝑏 = 0 → ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) ) ) |
56 |
|
dfsbcq |
⊢ ( 𝑏 = 0 → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
57 |
56
|
bibi2d |
⊢ ( 𝑏 = 0 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
58 |
55 57
|
imbi12d |
⊢ ( 𝑏 = 0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) ) |
59 |
52 58 42
|
vtocl2g |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
60 |
59
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
61 |
60
|
pm2.43i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
62 |
8 61
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
63 |
62
|
bicomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
64 |
|
0re |
⊢ 0 ∈ ℝ |
65 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
66 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ∨ 𝐴 ≤ 0 ) ) |
67 |
64 65 66
|
sylancr |
⊢ ( 𝐴 ∈ ℤ → ( 0 ≤ 𝐴 ∨ 𝐴 ≤ 0 ) ) |
68 |
46 63 67
|
mpjaodan |
⊢ ( 𝐴 ∈ ℤ → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
69 |
7 68
|
bitr3id |
⊢ ( 𝐴 ∈ ℤ → ( 𝜃 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
70 |
5
|
sbcieg |
⊢ ( 𝐴 ∈ ℤ → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜏 ) ) |
71 |
69 70
|
bitrd |
⊢ ( 𝐴 ∈ ℤ → ( 𝜃 ↔ 𝜏 ) ) |