Step |
Hyp |
Ref |
Expression |
1 |
|
zindd.1 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
zindd.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
zindd.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜏 ) ) |
4 |
|
zindd.4 |
⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
5 |
|
zindd.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) |
6 |
|
zindd.6 |
⊢ ( 𝜁 → 𝜓 ) |
7 |
|
zindd.7 |
⊢ ( 𝜁 → ( 𝑦 ∈ ℕ0 → ( 𝜒 → 𝜏 ) ) ) |
8 |
|
zindd.8 |
⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) ) |
9 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
10 |
|
elznn0nn |
⊢ ( - 𝑦 ∈ ℤ ↔ ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) ) |
12 |
|
simpr |
⊢ ( ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) → - - 𝑦 ∈ ℕ ) |
13 |
12
|
orim2i |
⊢ ( ( - 𝑦 ∈ ℕ0 ∨ ( - 𝑦 ∈ ℝ ∧ - - 𝑦 ∈ ℕ ) ) → ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ) |
14 |
11 13
|
syl |
⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ) |
15 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
16 |
15
|
negnegd |
⊢ ( 𝑦 ∈ ℤ → - - 𝑦 = 𝑦 ) |
17 |
16
|
eleq1d |
⊢ ( 𝑦 ∈ ℤ → ( - - 𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ ) ) |
18 |
17
|
orbi2d |
⊢ ( 𝑦 ∈ ℤ → ( ( - 𝑦 ∈ ℕ0 ∨ - - 𝑦 ∈ ℕ ) ↔ ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) ) ) |
19 |
14 18
|
mpbid |
⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) ) |
20 |
1
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜓 ) ) ) |
21 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜒 ) ) ) |
22 |
3
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜏 ) ) ) |
23 |
4
|
imbi2d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝜁 → 𝜑 ) ↔ ( 𝜁 → 𝜃 ) ) ) |
24 |
7
|
com12 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝜁 → ( 𝜒 → 𝜏 ) ) ) |
25 |
24
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝜁 → 𝜒 ) → ( 𝜁 → 𝜏 ) ) ) |
26 |
20 21 22 23 6 25
|
nn0ind |
⊢ ( - 𝑦 ∈ ℕ0 → ( 𝜁 → 𝜃 ) ) |
27 |
26
|
com12 |
⊢ ( 𝜁 → ( - 𝑦 ∈ ℕ0 → 𝜃 ) ) |
28 |
20 21 22 21 6 25
|
nn0ind |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝜁 → 𝜒 ) ) |
29 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
30 |
28 29
|
syl11 |
⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → 𝜒 ) ) |
31 |
30 8
|
mpdd |
⊢ ( 𝜁 → ( 𝑦 ∈ ℕ → 𝜃 ) ) |
32 |
27 31
|
jaod |
⊢ ( 𝜁 → ( ( - 𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ ) → 𝜃 ) ) |
33 |
19 32
|
syl5 |
⊢ ( 𝜁 → ( 𝑦 ∈ ℤ → 𝜃 ) ) |
34 |
33
|
ralrimiv |
⊢ ( 𝜁 → ∀ 𝑦 ∈ ℤ 𝜃 ) |
35 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
36 |
|
negeq |
⊢ ( 𝑦 = - 𝑥 → - 𝑦 = - - 𝑥 ) |
37 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
38 |
37
|
negnegd |
⊢ ( 𝑥 ∈ ℤ → - - 𝑥 = 𝑥 ) |
39 |
36 38
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → - 𝑦 = 𝑥 ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → 𝑥 = - 𝑦 ) |
41 |
40 4
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜑 ↔ 𝜃 ) ) |
42 |
41
|
bicomd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜃 ↔ 𝜑 ) ) |
43 |
35 42
|
rspcdv |
⊢ ( 𝑥 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ 𝜃 → 𝜑 ) ) |
44 |
43
|
com12 |
⊢ ( ∀ 𝑦 ∈ ℤ 𝜃 → ( 𝑥 ∈ ℤ → 𝜑 ) ) |
45 |
44
|
ralrimiv |
⊢ ( ∀ 𝑦 ∈ ℤ 𝜃 → ∀ 𝑥 ∈ ℤ 𝜑 ) |
46 |
5
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ℤ 𝜑 → ( 𝐴 ∈ ℤ → 𝜂 ) ) |
47 |
34 45 46
|
3syl |
⊢ ( 𝜁 → ( 𝐴 ∈ ℤ → 𝜂 ) ) |