Step |
Hyp |
Ref |
Expression |
1 |
|
elznn |
⊢ ( 𝑍 ∈ ℤ ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) ) |
2 |
|
nnge1 |
⊢ ( 𝑍 ∈ ℕ → 1 ≤ 𝑍 ) |
3 |
2
|
a1i |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ∈ ℕ → 1 ≤ 𝑍 ) ) |
4 |
|
elnn0z |
⊢ ( - 𝑍 ∈ ℕ0 ↔ ( - 𝑍 ∈ ℤ ∧ 0 ≤ - 𝑍 ) ) |
5 |
|
le0neg1 |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ≤ 0 ↔ 0 ≤ - 𝑍 ) ) |
6 |
5
|
biimprd |
⊢ ( 𝑍 ∈ ℝ → ( 0 ≤ - 𝑍 → 𝑍 ≤ 0 ) ) |
7 |
6
|
adantld |
⊢ ( 𝑍 ∈ ℝ → ( ( - 𝑍 ∈ ℤ ∧ 0 ≤ - 𝑍 ) → 𝑍 ≤ 0 ) ) |
8 |
4 7
|
syl5bi |
⊢ ( 𝑍 ∈ ℝ → ( - 𝑍 ∈ ℕ0 → 𝑍 ≤ 0 ) ) |
9 |
3 8
|
orim12d |
⊢ ( 𝑍 ∈ ℝ → ( ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) → ( 1 ≤ 𝑍 ∨ 𝑍 ≤ 0 ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) → ( 1 ≤ 𝑍 ∨ 𝑍 ≤ 0 ) ) |
11 |
10
|
orcomd |
⊢ ( ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) → ( 𝑍 ≤ 0 ∨ 1 ≤ 𝑍 ) ) |
12 |
1 11
|
sylbi |
⊢ ( 𝑍 ∈ ℤ → ( 𝑍 ≤ 0 ∨ 1 ≤ 𝑍 ) ) |