Step |
Hyp |
Ref |
Expression |
1 |
|
zlmassa.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
1 2
|
zlmbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
5 |
1
|
zlmsca |
⊢ ( 𝐺 ∈ Ring → ℤring = ( Scalar ‘ 𝑊 ) ) |
6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ Ring → ℤ = ( Base ‘ ℤring ) ) |
8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
9 |
1 8
|
zlmvsca |
⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
10 |
9
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
12 |
1 11
|
zlmmulr |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
13 |
12
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) ) |
14 |
|
ringabl |
⊢ ( 𝐺 ∈ Ring → 𝐺 ∈ Abel ) |
15 |
1
|
zlmlmod |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
16 |
14 15
|
sylib |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ LMod ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
18 |
1 17
|
zlmplusg |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
19 |
3 18 12
|
ringprop |
⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ Ring ) |
20 |
19
|
biimpi |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ Ring ) |
21 |
|
zringcrng |
⊢ ℤring ∈ CRing |
22 |
21
|
a1i |
⊢ ( 𝐺 ∈ Ring → ℤring ∈ CRing ) |
23 |
2 8 11
|
mulgass2 |
⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( .r ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
24 |
2 8 11
|
mulgass3 |
⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( .r ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
25 |
4 5 7 10 13 16 20 22 23 24
|
isassad |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ AssAlg ) |
26 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
27 |
26 19
|
sylibr |
⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Ring ) |
28 |
25 27
|
impbii |
⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg ) |