| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmassa.w | ⊢ 𝑊  =  ( ℤMod ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 1 2 | zlmbas | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐺  ∈  Ring  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 1 | zlmsca | ⊢ ( 𝐺  ∈  Ring  →  ℤring  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 6 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐺  ∈  Ring  →  ℤ  =  ( Base ‘ ℤring ) ) | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 9 | 1 8 | zlmvsca | ⊢ ( .g ‘ 𝐺 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐺  ∈  Ring  →  ( .g ‘ 𝐺 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝐺 ) | 
						
							| 12 | 1 11 | zlmmulr | ⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝑊 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐺  ∈  Ring  →  ( .r ‘ 𝐺 )  =  ( .r ‘ 𝑊 ) ) | 
						
							| 14 |  | ringabl | ⊢ ( 𝐺  ∈  Ring  →  𝐺  ∈  Abel ) | 
						
							| 15 | 1 | zlmlmod | ⊢ ( 𝐺  ∈  Abel  ↔  𝑊  ∈  LMod ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( 𝐺  ∈  Ring  →  𝑊  ∈  LMod ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 18 | 1 17 | zlmplusg | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝑊 ) | 
						
							| 19 | 3 18 12 | ringprop | ⊢ ( 𝐺  ∈  Ring  ↔  𝑊  ∈  Ring ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝐺  ∈  Ring  →  𝑊  ∈  Ring ) | 
						
							| 21 | 2 8 11 | mulgass2 | ⊢ ( ( 𝐺  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( .r ‘ 𝐺 ) 𝑧 )  =  ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) | 
						
							| 22 | 2 8 11 | mulgass3 | ⊢ ( ( 𝐺  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑦 ( .r ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) | 
						
							| 23 | 4 5 7 10 13 16 20 21 22 | isassad | ⊢ ( 𝐺  ∈  Ring  →  𝑊  ∈  AssAlg ) | 
						
							| 24 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 25 | 24 19 | sylibr | ⊢ ( 𝑊  ∈  AssAlg  →  𝐺  ∈  Ring ) | 
						
							| 26 | 23 25 | impbii | ⊢ ( 𝐺  ∈  Ring  ↔  𝑊  ∈  AssAlg ) |