Metamath Proof Explorer


Theorem zlmassa

Description: The ZZ -module operation turns a ring into an associative algebra over ZZ . Also see zlmlmod . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypothesis zlmassa.w 𝑊 = ( ℤMod ‘ 𝐺 )
Assertion zlmassa ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 zlmassa.w 𝑊 = ( ℤMod ‘ 𝐺 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 1 2 zlmbas ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 )
4 3 a1i ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) )
5 1 zlmsca ( 𝐺 ∈ Ring → ℤring = ( Scalar ‘ 𝑊 ) )
6 zringbas ℤ = ( Base ‘ ℤring )
7 6 a1i ( 𝐺 ∈ Ring → ℤ = ( Base ‘ ℤring ) )
8 eqid ( .g𝐺 ) = ( .g𝐺 )
9 1 8 zlmvsca ( .g𝐺 ) = ( ·𝑠𝑊 )
10 9 a1i ( 𝐺 ∈ Ring → ( .g𝐺 ) = ( ·𝑠𝑊 ) )
11 eqid ( .r𝐺 ) = ( .r𝐺 )
12 1 11 zlmmulr ( .r𝐺 ) = ( .r𝑊 )
13 12 a1i ( 𝐺 ∈ Ring → ( .r𝐺 ) = ( .r𝑊 ) )
14 ringabl ( 𝐺 ∈ Ring → 𝐺 ∈ Abel )
15 1 zlmlmod ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod )
16 14 15 sylib ( 𝐺 ∈ Ring → 𝑊 ∈ LMod )
17 eqid ( +g𝐺 ) = ( +g𝐺 )
18 1 17 zlmplusg ( +g𝐺 ) = ( +g𝑊 )
19 3 18 12 ringprop ( 𝐺 ∈ Ring ↔ 𝑊 ∈ Ring )
20 19 biimpi ( 𝐺 ∈ Ring → 𝑊 ∈ Ring )
21 zringcrng ring ∈ CRing
22 21 a1i ( 𝐺 ∈ Ring → ℤring ∈ CRing )
23 2 8 11 mulgass2 ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( .g𝐺 ) 𝑦 ) ( .r𝐺 ) 𝑧 ) = ( 𝑥 ( .g𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑧 ) ) )
24 2 8 11 mulgass3 ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( .r𝐺 ) ( 𝑥 ( .g𝐺 ) 𝑧 ) ) = ( 𝑥 ( .g𝐺 ) ( 𝑦 ( .r𝐺 ) 𝑧 ) ) )
25 4 5 7 10 13 16 20 22 23 24 isassad ( 𝐺 ∈ Ring → 𝑊 ∈ AssAlg )
26 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
27 26 19 sylibr ( 𝑊 ∈ AssAlg → 𝐺 ∈ Ring )
28 25 27 impbii ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg )