Description: Base set of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| zlmbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | zlmbas | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | zlmbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 4 | scandxnbasendx | ⊢ ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( Scalar ‘ ndx ) | 
| 6 | vscandxnbasendx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 7 | 6 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) | 
| 8 | 1 3 5 7 | zlmlem | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) | 
| 9 | 2 8 | eqtri | ⊢ 𝐵 = ( Base ‘ 𝑊 ) |