Step |
Hyp |
Ref |
Expression |
1 |
|
zlmclm.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
1
|
zlmlmod |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
3 |
2
|
biimpi |
⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ LMod ) |
4 |
1
|
zlmsca |
⊢ ( 𝐺 ∈ Abel → ℤring = ( Scalar ‘ 𝑊 ) ) |
5 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
6 |
4 5
|
eqtr3di |
⊢ ( 𝐺 ∈ Abel → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ℤ ) ) |
7 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ Abel → ℤ ∈ ( SubRing ‘ ℂfld ) ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
10 |
9
|
isclmi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ℤ ) ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |
11 |
3 6 8 10
|
syl3anc |
⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ ℂMod ) |
12 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
13 |
12 2
|
sylibr |
⊢ ( 𝑊 ∈ ℂMod → 𝐺 ∈ Abel ) |
14 |
11 13
|
impbii |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod ) |