Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmds.1 |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
4 |
1 3
|
zlmval |
⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝐺 ∈ 𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
6 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
7 |
|
slotsdnscsi |
⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
8 |
7
|
simp1i |
⊢ ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
9 |
6 8
|
setsnid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) |
10 |
7
|
simp2i |
⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
11 |
6 10
|
setsnid |
⊢ ( dist ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
12 |
9 11
|
eqtri |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
13 |
5 12
|
eqtr4di |
⊢ ( 𝐺 ∈ 𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐺 ) ) |
14 |
2 13
|
eqtr4id |
⊢ ( 𝐺 ∈ 𝑉 → 𝐷 = ( dist ‘ 𝑊 ) ) |