Metamath Proof Explorer


Theorem zlmlem

Description: Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
zlmlem.2 𝐸 = Slot 𝑁
zlmlem.3 𝑁 ∈ ℕ
zlmlem.4 𝑁 < 5
Assertion zlmlem ( 𝐸𝐺 ) = ( 𝐸𝑊 )

Proof

Step Hyp Ref Expression
1 zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmlem.2 𝐸 = Slot 𝑁
3 zlmlem.3 𝑁 ∈ ℕ
4 zlmlem.4 𝑁 < 5
5 2 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
6 2 3 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
7 3 nnrei 𝑁 ∈ ℝ
8 6 7 eqeltri ( 𝐸 ‘ ndx ) ∈ ℝ
9 6 4 eqbrtri ( 𝐸 ‘ ndx ) < 5
10 8 9 ltneii ( 𝐸 ‘ ndx ) ≠ 5
11 scandx ( Scalar ‘ ndx ) = 5
12 10 11 neeqtrri ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx )
13 5 12 setsnid ( 𝐸𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) )
14 5lt6 5 < 6
15 5re 5 ∈ ℝ
16 6re 6 ∈ ℝ
17 8 15 16 lttri ( ( ( 𝐸 ‘ ndx ) < 5 ∧ 5 < 6 ) → ( 𝐸 ‘ ndx ) < 6 )
18 9 14 17 mp2an ( 𝐸 ‘ ndx ) < 6
19 8 18 ltneii ( 𝐸 ‘ ndx ) ≠ 6
20 vscandx ( ·𝑠 ‘ ndx ) = 6
21 19 20 neeqtrri ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
22 5 21 setsnid ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
23 13 22 eqtri ( 𝐸𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
24 eqid ( .g𝐺 ) = ( .g𝐺 )
25 1 24 zlmval ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
26 25 fveq2d ( 𝐺 ∈ V → ( 𝐸𝑊 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) ) )
27 23 26 eqtr4id ( 𝐺 ∈ V → ( 𝐸𝐺 ) = ( 𝐸𝑊 ) )
28 2 str0 ∅ = ( 𝐸 ‘ ∅ )
29 fvprc ( ¬ 𝐺 ∈ V → ( 𝐸𝐺 ) = ∅ )
30 fvprc ( ¬ 𝐺 ∈ V → ( ℤMod ‘ 𝐺 ) = ∅ )
31 1 30 eqtrid ( ¬ 𝐺 ∈ V → 𝑊 = ∅ )
32 31 fveq2d ( ¬ 𝐺 ∈ V → ( 𝐸𝑊 ) = ( 𝐸 ‘ ∅ ) )
33 28 29 32 3eqtr4a ( ¬ 𝐺 ∈ V → ( 𝐸𝐺 ) = ( 𝐸𝑊 ) )
34 27 33 pm2.61i ( 𝐸𝐺 ) = ( 𝐸𝑊 )