| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w | ⊢ 𝑊  =  ( ℤMod ‘ 𝐺 ) | 
						
							| 2 |  | zlmlem.2 | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 3 |  | zlmlem.3 | ⊢ ( 𝐸 ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 4 |  | zlmlem.4 | ⊢ ( 𝐸 ‘ ndx )  ≠  (  ·𝑠  ‘ ndx ) | 
						
							| 5 | 2 3 | setsnid | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 ) ) | 
						
							| 6 | 2 4 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 ) )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 7 | 5 6 | eqtri | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 9 | 1 8 | zlmval | ⊢ ( 𝐺  ∈  V  →  𝑊  =  ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐺  ∈  V  →  ( 𝐸 ‘ 𝑊 )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) ) | 
						
							| 11 | 7 10 | eqtr4id | ⊢ ( 𝐺  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) ) | 
						
							| 12 | 2 | str0 | ⊢ ∅  =  ( 𝐸 ‘ ∅ ) | 
						
							| 13 | 12 | eqcomi | ⊢ ( 𝐸 ‘ ∅ )  =  ∅ | 
						
							| 14 | 13 1 | fveqprc | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) ) | 
						
							| 15 | 11 14 | pm2.61i | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) |