| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w | ⊢ 𝑊  =  ( ℤMod ‘ 𝐺 ) | 
						
							| 2 |  | zlmlemOLD.2 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 3 |  | zlmlemOLD.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | zlmlemOLD.4 | ⊢ 𝑁  <  5 | 
						
							| 5 | 2 3 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 6 | 2 3 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 7 | 3 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 8 | 6 7 | eqeltri | ⊢ ( 𝐸 ‘ ndx )  ∈  ℝ | 
						
							| 9 | 6 4 | eqbrtri | ⊢ ( 𝐸 ‘ ndx )  <  5 | 
						
							| 10 | 8 9 | ltneii | ⊢ ( 𝐸 ‘ ndx )  ≠  5 | 
						
							| 11 |  | scandx | ⊢ ( Scalar ‘ ndx )  =  5 | 
						
							| 12 | 10 11 | neeqtrri | ⊢ ( 𝐸 ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 13 | 5 12 | setsnid | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 ) ) | 
						
							| 14 |  | 5lt6 | ⊢ 5  <  6 | 
						
							| 15 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 16 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 17 | 8 15 16 | lttri | ⊢ ( ( ( 𝐸 ‘ ndx )  <  5  ∧  5  <  6 )  →  ( 𝐸 ‘ ndx )  <  6 ) | 
						
							| 18 | 9 14 17 | mp2an | ⊢ ( 𝐸 ‘ ndx )  <  6 | 
						
							| 19 | 8 18 | ltneii | ⊢ ( 𝐸 ‘ ndx )  ≠  6 | 
						
							| 20 |  | vscandx | ⊢ (  ·𝑠  ‘ ndx )  =  6 | 
						
							| 21 | 19 20 | neeqtrri | ⊢ ( 𝐸 ‘ ndx )  ≠  (  ·𝑠  ‘ ndx ) | 
						
							| 22 | 5 21 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 ) )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 23 | 13 22 | eqtri | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 24 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 25 | 1 24 | zlmval | ⊢ ( 𝐺  ∈  V  →  𝑊  =  ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝐺  ∈  V  →  ( 𝐸 ‘ 𝑊 )  =  ( 𝐸 ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .g ‘ 𝐺 ) 〉 ) ) ) | 
						
							| 27 | 23 26 | eqtr4id | ⊢ ( 𝐺  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) ) | 
						
							| 28 | 2 | str0 | ⊢ ∅  =  ( 𝐸 ‘ ∅ ) | 
						
							| 29 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ∅ ) | 
						
							| 30 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( ℤMod ‘ 𝐺 )  =  ∅ ) | 
						
							| 31 | 1 30 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝑊  =  ∅ ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐸 ‘ 𝑊 )  =  ( 𝐸 ‘ ∅ ) ) | 
						
							| 33 | 28 29 32 | 3eqtr4a | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) ) | 
						
							| 34 | 27 33 | pm2.61i | ⊢ ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ 𝑊 ) |