Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlmod.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
1 2
|
zlmbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ Abel → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
1 5
|
zlmplusg |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ Abel → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) ) |
8 |
1
|
zlmsca |
⊢ ( 𝐺 ∈ Abel → ℤring = ( Scalar ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
10 |
1 9
|
zlmvsca |
⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
11 |
10
|
a1i |
⊢ ( 𝐺 ∈ Abel → ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) ) |
12 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
13 |
12
|
a1i |
⊢ ( 𝐺 ∈ Abel → ℤ = ( Base ‘ ℤring ) ) |
14 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
15 |
14
|
a1i |
⊢ ( 𝐺 ∈ Abel → + = ( +g ‘ ℤring ) ) |
16 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
17 |
16
|
a1i |
⊢ ( 𝐺 ∈ Abel → · = ( .r ‘ ℤring ) ) |
18 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
19 |
18
|
a1i |
⊢ ( 𝐺 ∈ Abel → 1 = ( 1r ‘ ℤring ) ) |
20 |
|
zringring |
⊢ ℤring ∈ Ring |
21 |
20
|
a1i |
⊢ ( 𝐺 ∈ Abel → ℤring ∈ Ring ) |
22 |
3 6
|
ablprop |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ Abel ) |
23 |
|
ablgrp |
⊢ ( 𝑊 ∈ Abel → 𝑊 ∈ Grp ) |
24 |
22 23
|
sylbi |
⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ Grp ) |
25 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
26 |
2 9
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
27 |
25 26
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
28 |
2 9 5
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
29 |
2 9 5
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 + 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ( +g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
30 |
25 29
|
sylan |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 + 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ( +g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
31 |
2 9
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 · 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
32 |
25 31
|
sylan |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 · 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
33 |
2 9
|
mulg1 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
34 |
33
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
35 |
4 7 8 11 13 15 17 19 21 24 27 28 30 32 34
|
islmodd |
⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ LMod ) |
36 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
37 |
36 22
|
sylibr |
⊢ ( 𝑊 ∈ LMod → 𝐺 ∈ Abel ) |
38 |
35 37
|
impbii |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |