Metamath Proof Explorer
Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
|
|
zlmmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
|
Assertion |
zlmmulr |
⊢ · = ( .r ‘ 𝑊 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
3 |
|
df-mulr |
⊢ .r = Slot 3 |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
|
3lt5 |
⊢ 3 < 5 |
6 |
1 3 4 5
|
zlmlem |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
7 |
2 6
|
eqtri |
⊢ · = ( .r ‘ 𝑊 ) |