Metamath Proof Explorer
Description: Group operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
|
|
zlmplusg.2 |
⊢ + = ( +g ‘ 𝐺 ) |
|
Assertion |
zlmplusg |
⊢ + = ( +g ‘ 𝑊 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmplusg.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
df-plusg |
⊢ +g = Slot 2 |
4 |
|
2nn |
⊢ 2 ∈ ℕ |
5 |
|
2lt5 |
⊢ 2 < 5 |
6 |
1 3 4 5
|
zlmlem |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
7 |
2 6
|
eqtri |
⊢ + = ( +g ‘ 𝑊 ) |