Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
3 |
|
5re |
⊢ 5 ∈ ℝ |
4 |
|
5lt6 |
⊢ 5 < 6 |
5 |
3 4
|
ltneii |
⊢ 5 ≠ 6 |
6 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
7 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
8 |
6 7
|
neeq12i |
⊢ ( ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 5 ≠ 6 ) |
9 |
5 8
|
mpbir |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
10 |
2 9
|
setsnid |
⊢ ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( Scalar ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
11 |
|
zringring |
⊢ ℤring ∈ Ring |
12 |
2
|
setsid |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring ) → ℤring = ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) ) |
13 |
11 12
|
mpan2 |
⊢ ( 𝐺 ∈ 𝑉 → ℤring = ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) ) |
14 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
15 |
1 14
|
zlmval |
⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝐺 ∈ 𝑉 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
17 |
10 13 16
|
3eqtr4a |
⊢ ( 𝐺 ∈ 𝑉 → ℤring = ( Scalar ‘ 𝑊 ) ) |