| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w | ⊢ 𝑊  =  ( ℤMod ‘ 𝐺 ) | 
						
							| 2 |  | zlmvsca.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | ovex | ⊢ ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  ∈  V | 
						
							| 4 | 2 | fvexi | ⊢  ·   ∈  V | 
						
							| 5 |  | vscaid | ⊢  ·𝑠   =  Slot  (  ·𝑠  ‘ ndx ) | 
						
							| 6 | 5 | setsid | ⊢ ( ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  ∈  V  ∧   ·   ∈  V )  →   ·   =  (  ·𝑠  ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ) ) ) | 
						
							| 7 | 3 4 6 | mp2an | ⊢  ·   =  (  ·𝑠  ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ) ) | 
						
							| 8 | 1 2 | zlmval | ⊢ ( 𝐺  ∈  V  →  𝑊  =  ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝐺  ∈  V  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ ( ( 𝐺  sSet  〈 ( Scalar ‘ ndx ) ,  ℤring 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ) ) ) | 
						
							| 10 | 7 9 | eqtr4id | ⊢ ( 𝐺  ∈  V  →   ·   =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 11 | 5 | str0 | ⊢ ∅  =  (  ·𝑠  ‘ ∅ ) | 
						
							| 12 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ∅ ) | 
						
							| 13 | 2 12 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →   ·   =  ∅ ) | 
						
							| 14 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( ℤMod ‘ 𝐺 )  =  ∅ ) | 
						
							| 15 | 1 14 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝑊  =  ∅ ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ¬  𝐺  ∈  V  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ ∅ ) ) | 
						
							| 17 | 11 13 16 | 3eqtr4a | ⊢ ( ¬  𝐺  ∈  V  →   ·   =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 18 | 10 17 | pm2.61i | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) |