Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmvsca.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
ovex |
⊢ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ∈ V |
4 |
2
|
fvexi |
⊢ · ∈ V |
5 |
|
vscaid |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) |
6 |
5
|
setsid |
⊢ ( ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ∈ V ∧ · ∈ V ) → · = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) ) |
7 |
3 4 6
|
mp2an |
⊢ · = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
8 |
1 2
|
zlmval |
⊢ ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝐺 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) ) |
10 |
7 9
|
eqtr4id |
⊢ ( 𝐺 ∈ V → · = ( ·𝑠 ‘ 𝑊 ) ) |
11 |
5
|
str0 |
⊢ ∅ = ( ·𝑠 ‘ ∅ ) |
12 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) |
13 |
2 12
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → · = ∅ ) |
14 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( ℤMod ‘ 𝐺 ) = ∅ ) |
15 |
1 14
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 𝑊 = ∅ ) |
16 |
15
|
fveq2d |
⊢ ( ¬ 𝐺 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ∅ ) ) |
17 |
11 13 16
|
3eqtr4a |
⊢ ( ¬ 𝐺 ∈ V → · = ( ·𝑠 ‘ 𝑊 ) ) |
18 |
10 17
|
pm2.61i |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |