| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 3 |  | elioore | ⊢ ( 𝐴  ∈  ( 0 (,) 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 5 | 2 4 | readdcld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  +  𝐴 )  ∈  ℝ ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  +  𝐴 )  ∈  ℝ ) | 
						
							| 7 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 9 |  | ltle | ⊢ ( ( ( 𝑀  +  𝐴 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑀  +  𝐴 )  <  𝑁  →  ( 𝑀  +  𝐴 )  ≤  𝑁 ) ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑀  +  𝐴 )  <  𝑁  →  ( 𝑀  +  𝐴 )  ≤  𝑁 ) ) | 
						
							| 11 |  | elioo3g | ⊢ ( 𝐴  ∈  ( 0 (,) 1 )  ↔  ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  ∧  ( 0  <  𝐴  ∧  𝐴  <  1 ) ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 0  <  𝐴  ∧  𝐴  <  1 )  →  0  <  𝐴 ) | 
						
							| 13 | 11 12 | simplbiim | ⊢ ( 𝐴  ∈  ( 0 (,) 1 )  →  0  <  𝐴 ) | 
						
							| 14 | 3 13 | elrpd | ⊢ ( 𝐴  ∈  ( 0 (,) 1 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 15 |  | addlelt | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( ( 𝑀  +  𝐴 )  ≤  𝑁  →  𝑀  <  𝑁 ) ) | 
						
							| 16 | 1 7 14 15 | syl3an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑀  +  𝐴 )  ≤  𝑁  →  𝑀  <  𝑁 ) ) | 
						
							| 17 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 19 | 3 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 20 |  | 1red | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  1  ∈  ℝ ) | 
						
							| 21 | 1 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 22 |  | simpr | ⊢ ( ( 0  <  𝐴  ∧  𝐴  <  1 )  →  𝐴  <  1 ) | 
						
							| 23 | 11 22 | simplbiim | ⊢ ( 𝐴  ∈  ( 0 (,) 1 )  →  𝐴  <  1 ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  𝐴  <  1 ) | 
						
							| 25 | 19 20 21 24 | ltadd2dd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  +  𝐴 )  <  ( 𝑀  +  1 ) ) | 
						
							| 26 |  | peano2z | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 27 | 26 | zred | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 29 |  | ltletr | ⊢ ( ( ( 𝑀  +  𝐴 )  ∈  ℝ  ∧  ( 𝑀  +  1 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( 𝑀  +  𝐴 )  <  ( 𝑀  +  1 )  ∧  ( 𝑀  +  1 )  ≤  𝑁 )  →  ( 𝑀  +  𝐴 )  <  𝑁 ) ) | 
						
							| 30 | 6 28 8 29 | syl3anc | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( ( 𝑀  +  𝐴 )  <  ( 𝑀  +  1 )  ∧  ( 𝑀  +  1 )  ≤  𝑁 )  →  ( 𝑀  +  𝐴 )  <  𝑁 ) ) | 
						
							| 31 | 25 30 | mpand | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  ( 𝑀  +  𝐴 )  <  𝑁 ) ) | 
						
							| 32 | 18 31 | sylbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( 𝑀  <  𝑁  →  ( 𝑀  +  𝐴 )  <  𝑁 ) ) | 
						
							| 33 | 16 32 | syld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑀  +  𝐴 )  ≤  𝑁  →  ( 𝑀  +  𝐴 )  <  𝑁 ) ) | 
						
							| 34 | 10 33 | impbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑀  +  𝐴 )  <  𝑁  ↔  ( 𝑀  +  𝐴 )  ≤  𝑁 ) ) |