| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 2 |  | zmin | ⊢ ( - 𝐴  ∈  ℝ  →  ∃! 𝑧  ∈  ℤ ( - 𝐴  ≤  𝑧  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑧  ∈  ℤ ( - 𝐴  ≤  𝑧  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 ) ) ) | 
						
							| 4 |  | znegcl | ⊢ ( 𝑥  ∈  ℤ  →  - 𝑥  ∈  ℤ ) | 
						
							| 5 |  | znegcl | ⊢ ( 𝑧  ∈  ℤ  →  - 𝑧  ∈  ℤ ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℂ ) | 
						
							| 7 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 8 |  | negcon2 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑧  =  - 𝑥  ↔  𝑥  =  - 𝑧 ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑧  =  - 𝑥  ↔  𝑥  =  - 𝑧 ) ) | 
						
							| 10 | 5 9 | reuhyp | ⊢ ( 𝑧  ∈  ℤ  →  ∃! 𝑥  ∈  ℤ 𝑧  =  - 𝑥 ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑧  =  - 𝑥  →  ( - 𝐴  ≤  𝑧  ↔  - 𝐴  ≤  - 𝑥 ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑧  =  - 𝑥  →  ( 𝑧  ≤  𝑤  ↔  - 𝑥  ≤  𝑤 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑧  =  - 𝑥  →  ( ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 )  ↔  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑧  =  - 𝑥  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 )  ↔  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 15 | 11 14 | anbi12d | ⊢ ( 𝑧  =  - 𝑥  →  ( ( - 𝐴  ≤  𝑧  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 ) )  ↔  ( - 𝐴  ≤  - 𝑥  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 16 | 4 10 15 | reuxfr1 | ⊢ ( ∃! 𝑧  ∈  ℤ ( - 𝐴  ≤  𝑧  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 ) )  ↔  ∃! 𝑥  ∈  ℤ ( - 𝐴  ≤  - 𝑥  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 17 |  | zre | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ ) | 
						
							| 18 |  | leneg | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝑥  ≤  𝐴  ↔  - 𝐴  ≤  - 𝑥 ) ) | 
						
							| 19 | 17 18 | sylan | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  ( 𝑥  ≤  𝐴  ↔  - 𝐴  ≤  - 𝑥 ) ) | 
						
							| 20 | 19 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  ≤  𝐴  ↔  - 𝐴  ≤  - 𝑥 ) ) | 
						
							| 21 |  | znegcl | ⊢ ( 𝑤  ∈  ℤ  →  - 𝑤  ∈  ℤ ) | 
						
							| 22 |  | breq1 | ⊢ ( 𝑦  =  - 𝑤  →  ( 𝑦  ≤  𝐴  ↔  - 𝑤  ≤  𝐴 ) ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑦  =  - 𝑤  →  ( 𝑦  ≤  𝑥  ↔  - 𝑤  ≤  𝑥 ) ) | 
						
							| 24 | 22 23 | imbi12d | ⊢ ( 𝑦  =  - 𝑤  →  ( ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 ) ) ) | 
						
							| 25 | 24 | rspcv | ⊢ ( - 𝑤  ∈  ℤ  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  →  ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 ) ) ) | 
						
							| 26 | 21 25 | syl | ⊢ ( 𝑤  ∈  ℤ  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  →  ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 ) ) ) | 
						
							| 27 |  | zre | ⊢ ( 𝑤  ∈  ℤ  →  𝑤  ∈  ℝ ) | 
						
							| 28 |  | lenegcon1 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( - 𝑤  ≤  𝐴  ↔  - 𝐴  ≤  𝑤 ) ) | 
						
							| 29 | 28 | adantrr | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( - 𝑤  ≤  𝐴  ↔  - 𝐴  ≤  𝑤 ) ) | 
						
							| 30 |  | lenegcon1 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( - 𝑤  ≤  𝑥  ↔  - 𝑥  ≤  𝑤 ) ) | 
						
							| 31 | 17 30 | sylan2 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( - 𝑤  ≤  𝑥  ↔  - 𝑥  ≤  𝑤 ) ) | 
						
							| 32 | 31 | adantrl | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( - 𝑤  ≤  𝑥  ↔  - 𝑥  ≤  𝑤 ) ) | 
						
							| 33 | 29 32 | imbi12d | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 )  ↔  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 34 | 27 33 | sylan | ⊢ ( ( 𝑤  ∈  ℤ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 )  ↔  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( ( 𝑤  ∈  ℤ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 )  →  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝑤  ∈  ℤ  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 )  →  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 37 | 36 | com23 | ⊢ ( 𝑤  ∈  ℤ  →  ( ( - 𝑤  ≤  𝐴  →  - 𝑤  ≤  𝑥 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 38 | 26 37 | syld | ⊢ ( 𝑤  ∈  ℤ  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 39 | 38 | com13 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  →  ( 𝑤  ∈  ℤ  →  ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 40 | 39 | ralrimdv | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  →  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 41 |  | znegcl | ⊢ ( 𝑦  ∈  ℤ  →  - 𝑦  ∈  ℤ ) | 
						
							| 42 |  | breq2 | ⊢ ( 𝑤  =  - 𝑦  →  ( - 𝐴  ≤  𝑤  ↔  - 𝐴  ≤  - 𝑦 ) ) | 
						
							| 43 |  | breq2 | ⊢ ( 𝑤  =  - 𝑦  →  ( - 𝑥  ≤  𝑤  ↔  - 𝑥  ≤  - 𝑦 ) ) | 
						
							| 44 | 42 43 | imbi12d | ⊢ ( 𝑤  =  - 𝑦  →  ( ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  ↔  ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 ) ) ) | 
						
							| 45 | 44 | rspcv | ⊢ ( - 𝑦  ∈  ℤ  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  →  ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 ) ) ) | 
						
							| 46 | 41 45 | syl | ⊢ ( 𝑦  ∈  ℤ  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  →  ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 ) ) ) | 
						
							| 47 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 48 |  | leneg | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝑦  ≤  𝐴  ↔  - 𝐴  ≤  - 𝑦 ) ) | 
						
							| 49 | 48 | adantrr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑦  ≤  𝐴  ↔  - 𝐴  ≤  - 𝑦 ) ) | 
						
							| 50 |  | leneg | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑦  ≤  𝑥  ↔  - 𝑥  ≤  - 𝑦 ) ) | 
						
							| 51 | 17 50 | sylan2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( 𝑦  ≤  𝑥  ↔  - 𝑥  ≤  - 𝑦 ) ) | 
						
							| 52 | 51 | adantrl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑦  ≤  𝑥  ↔  - 𝑥  ≤  - 𝑦 ) ) | 
						
							| 53 | 49 52 | imbi12d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 ) ) ) | 
						
							| 54 | 47 53 | sylan | ⊢ ( ( 𝑦  ∈  ℤ  ∧  ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ ) )  →  ( ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 ) ) ) | 
						
							| 55 | 54 | exbiri | ⊢ ( 𝑦  ∈  ℤ  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 )  →  ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) | 
						
							| 56 | 55 | com23 | ⊢ ( 𝑦  ∈  ℤ  →  ( ( - 𝐴  ≤  - 𝑦  →  - 𝑥  ≤  - 𝑦 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) | 
						
							| 57 | 46 56 | syld | ⊢ ( 𝑦  ∈  ℤ  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) | 
						
							| 58 | 57 | com13 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  →  ( 𝑦  ∈  ℤ  →  ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) | 
						
							| 59 | 58 | ralrimdv | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 )  →  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) | 
						
							| 60 | 40 59 | impbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) | 
						
							| 61 | 20 60 | anbi12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) )  ↔  ( - 𝐴  ≤  - 𝑥  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 62 | 61 | reubidva | ⊢ ( 𝐴  ∈  ℝ  →  ( ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) )  ↔  ∃! 𝑥  ∈  ℤ ( - 𝐴  ≤  - 𝑥  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  - 𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 63 | 16 62 | bitr4id | ⊢ ( 𝐴  ∈  ℝ  →  ( ∃! 𝑧  ∈  ℤ ( - 𝐴  ≤  𝑧  ∧  ∀ 𝑤  ∈  ℤ ( - 𝐴  ≤  𝑤  →  𝑧  ≤  𝑤 ) )  ↔  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) | 
						
							| 64 | 3 63 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) |