Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
2 |
|
zmin |
⊢ ( - 𝐴 ∈ ℝ → ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) |
4 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
5 |
|
znegcl |
⊢ ( 𝑧 ∈ ℤ → - 𝑧 ∈ ℤ ) |
6 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
7 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
8 |
|
negcon2 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 = - 𝑥 ↔ 𝑥 = - 𝑧 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑧 = - 𝑥 ↔ 𝑥 = - 𝑧 ) ) |
10 |
5 9
|
reuhyp |
⊢ ( 𝑧 ∈ ℤ → ∃! 𝑥 ∈ ℤ 𝑧 = - 𝑥 ) |
11 |
|
breq2 |
⊢ ( 𝑧 = - 𝑥 → ( - 𝐴 ≤ 𝑧 ↔ - 𝐴 ≤ - 𝑥 ) ) |
12 |
|
breq1 |
⊢ ( 𝑧 = - 𝑥 → ( 𝑧 ≤ 𝑤 ↔ - 𝑥 ≤ 𝑤 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑧 = - 𝑥 → ( ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑧 = - 𝑥 → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ↔ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
15 |
11 14
|
anbi12d |
⊢ ( 𝑧 = - 𝑥 → ( ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
16 |
4 10 15
|
reuxfr1 |
⊢ ( ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
17 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
18 |
|
leneg |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
19 |
17 18
|
sylan |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
20 |
19
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
21 |
|
znegcl |
⊢ ( 𝑤 ∈ ℤ → - 𝑤 ∈ ℤ ) |
22 |
|
breq1 |
⊢ ( 𝑦 = - 𝑤 → ( 𝑦 ≤ 𝐴 ↔ - 𝑤 ≤ 𝐴 ) ) |
23 |
|
breq1 |
⊢ ( 𝑦 = - 𝑤 → ( 𝑦 ≤ 𝑥 ↔ - 𝑤 ≤ 𝑥 ) ) |
24 |
22 23
|
imbi12d |
⊢ ( 𝑦 = - 𝑤 → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
25 |
24
|
rspcv |
⊢ ( - 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
26 |
21 25
|
syl |
⊢ ( 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
27 |
|
zre |
⊢ ( 𝑤 ∈ ℤ → 𝑤 ∈ ℝ ) |
28 |
|
lenegcon1 |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( - 𝑤 ≤ 𝐴 ↔ - 𝐴 ≤ 𝑤 ) ) |
29 |
28
|
adantrr |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( - 𝑤 ≤ 𝐴 ↔ - 𝐴 ≤ 𝑤 ) ) |
30 |
|
lenegcon1 |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) |
31 |
17 30
|
sylan2 |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) |
32 |
31
|
adantrl |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) |
33 |
29 32
|
imbi12d |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
34 |
27 33
|
sylan |
⊢ ( ( 𝑤 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
35 |
34
|
biimpd |
⊢ ( ( 𝑤 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
36 |
35
|
ex |
⊢ ( 𝑤 ∈ ℤ → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
37 |
36
|
com23 |
⊢ ( 𝑤 ∈ ℤ → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
38 |
26 37
|
syld |
⊢ ( 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
39 |
38
|
com13 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( 𝑤 ∈ ℤ → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
40 |
39
|
ralrimdv |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
41 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
42 |
|
breq2 |
⊢ ( 𝑤 = - 𝑦 → ( - 𝐴 ≤ 𝑤 ↔ - 𝐴 ≤ - 𝑦 ) ) |
43 |
|
breq2 |
⊢ ( 𝑤 = - 𝑦 → ( - 𝑥 ≤ 𝑤 ↔ - 𝑥 ≤ - 𝑦 ) ) |
44 |
42 43
|
imbi12d |
⊢ ( 𝑤 = - 𝑦 → ( ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
45 |
44
|
rspcv |
⊢ ( - 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
46 |
41 45
|
syl |
⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
47 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
48 |
|
leneg |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑦 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑦 ) ) |
49 |
48
|
adantrr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑦 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑦 ) ) |
50 |
|
leneg |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) |
51 |
17 50
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) |
52 |
51
|
adantrl |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) |
53 |
49 52
|
imbi12d |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
54 |
47 53
|
sylan |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
55 |
54
|
exbiri |
⊢ ( 𝑦 ∈ ℤ → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
56 |
55
|
com23 |
⊢ ( 𝑦 ∈ ℤ → ( ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
57 |
46 56
|
syld |
⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
58 |
57
|
com13 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( 𝑦 ∈ ℤ → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
59 |
58
|
ralrimdv |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |
60 |
40 59
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
61 |
20 60
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
62 |
61
|
reubidva |
⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
63 |
16 62
|
bitr4id |
⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
64 |
3 63
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |