| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnssz | ⊢ ℕ  ⊆  ℤ | 
						
							| 2 |  | arch | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑧  ∈  ℕ 𝐴  <  𝑧 ) | 
						
							| 3 |  | ssrexv | ⊢ ( ℕ  ⊆  ℤ  →  ( ∃ 𝑧  ∈  ℕ 𝐴  <  𝑧  →  ∃ 𝑧  ∈  ℤ 𝐴  <  𝑧 ) ) | 
						
							| 4 | 1 2 3 | mpsyl | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑧  ∈  ℤ 𝐴  <  𝑧 ) | 
						
							| 5 |  | zre | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℝ ) | 
						
							| 6 |  | ltle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝐴  <  𝑧  →  𝐴  ≤  𝑧 ) ) | 
						
							| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑧  ∈  ℤ )  →  ( 𝐴  <  𝑧  →  𝐴  ≤  𝑧 ) ) | 
						
							| 8 | 7 | reximdva | ⊢ ( 𝐴  ∈  ℝ  →  ( ∃ 𝑧  ∈  ℤ 𝐴  <  𝑧  →  ∃ 𝑧  ∈  ℤ 𝐴  ≤  𝑧 ) ) | 
						
							| 9 | 4 8 | mpd | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑧  ∈  ℤ 𝐴  ≤  𝑧 ) | 
						
							| 10 |  | rabn0 | ⊢ ( { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ≠  ∅  ↔  ∃ 𝑧  ∈  ℤ 𝐴  ≤  𝑧 ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( 𝐴  ∈  ℝ  →  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ≠  ∅ ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑧  =  𝑛  →  ( 𝐴  ≤  𝑧  ↔  𝐴  ≤  𝑛 ) ) | 
						
							| 13 | 12 | cbvrabv | ⊢ { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  =  { 𝑛  ∈  ℤ  ∣  𝐴  ≤  𝑛 } | 
						
							| 14 | 13 | eqimssi | ⊢ { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ⊆  { 𝑛  ∈  ℤ  ∣  𝐴  ≤  𝑛 } | 
						
							| 15 |  | uzwo3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ⊆  { 𝑛  ∈  ℤ  ∣  𝐴  ≤  𝑛 }  ∧  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ≠  ∅ ) )  →  ∃! 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 ) | 
						
							| 16 | 14 15 | mpanr1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ≠  ∅ )  →  ∃! 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 ) | 
						
							| 17 | 11 16 | mpdan | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐴  ≤  𝑧  ↔  𝐴  ≤  𝑥 ) ) | 
						
							| 19 | 18 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ↔  ( 𝑥  ∈  ℤ  ∧  𝐴  ≤  𝑥 ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐴  ≤  𝑧  ↔  𝐴  ≤  𝑦 ) ) | 
						
							| 21 | 20 | ralrab | ⊢ ( ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) | 
						
							| 22 | 19 21 | anbi12i | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 )  ↔  ( ( 𝑥  ∈  ℤ  ∧  𝐴  ≤  𝑥 )  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 23 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝐴  ≤  𝑥 )  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 24 | 22 23 | bitri | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 25 | 24 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 )  ↔  ∃! 𝑥 ( 𝑥  ∈  ℤ  ∧  ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 26 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦  ↔  ∃! 𝑥 ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦 ) ) | 
						
							| 27 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  ℤ ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) )  ↔  ∃! 𝑥 ( 𝑥  ∈  ℤ  ∧  ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 28 | 25 26 27 | 3bitr4i | ⊢ ( ∃! 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝐴  ≤  𝑧 } 𝑥  ≤  𝑦  ↔  ∃! 𝑥  ∈  ℤ ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 29 | 17 28 | sylib | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝐴  ≤  𝑥  ∧  ∀ 𝑦  ∈  ℤ ( 𝐴  ≤  𝑦  →  𝑥  ≤  𝑦 ) ) ) |