Metamath Proof Explorer


Theorem zmod10

Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion zmod10 ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 )

Proof

Step Hyp Ref Expression
1 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
2 modfrac ( 𝑁 ∈ ℝ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) )
3 1 2 syl ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) )
4 flid ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 )
5 4 oveq2d ( 𝑁 ∈ ℤ → ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) = ( 𝑁𝑁 ) )
6 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
7 6 subidd ( 𝑁 ∈ ℤ → ( 𝑁𝑁 ) = 0 )
8 3 5 7 3eqtrd ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 )