Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | zmod10 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
2 | modfrac | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) ) |
4 | flid | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) | |
5 | 4 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) = ( 𝑁 − 𝑁 ) ) |
6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
7 | 6 | subidd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 𝑁 ) = 0 ) |
8 | 3 5 7 | 3eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 ) |