Metamath Proof Explorer


Theorem zmod1congr

Description: Two arbitrary integers are congruent modulo 1, see example 4 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)

Ref Expression
Assertion zmod1congr ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) )

Proof

Step Hyp Ref Expression
1 zmod10 ( 𝐴 ∈ ℤ → ( 𝐴 mod 1 ) = 0 )
2 1 adantr ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = 0 )
3 zmod10 ( 𝐵 ∈ ℤ → ( 𝐵 mod 1 ) = 0 )
4 3 adantl ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 mod 1 ) = 0 )
5 2 4 eqtr4d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) )