Description: Two arbitrary integers are congruent modulo 1, see example 4 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmod1congr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zmod10 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 mod 1 ) = 0 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = 0 ) | 
| 3 | zmod10 | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 mod 1 ) = 0 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 mod 1 ) = 0 ) | 
| 5 | 2 4 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) ) |