Description: Two arbitrary integers are congruent modulo 1, see example 4 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | zmod1congr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmod10 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 mod 1 ) = 0 ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = 0 ) |
3 | zmod10 | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 mod 1 ) = 0 ) | |
4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 mod 1 ) = 0 ) |
5 | 2 4 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 mod 1 ) = ( 𝐵 mod 1 ) ) |