Metamath Proof Explorer
Description: Closure law for the modulo operation restricted to integers.
(Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
zmodcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
|
|
zmodcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
|
Assertion |
zmodcld |
⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℕ0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zmodcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
zmodcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
zmodcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℕ0 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℕ0 ) |