Metamath Proof Explorer


Theorem zmodcld

Description: Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses zmodcld.1 ( 𝜑𝐴 ∈ ℤ )
zmodcld.2 ( 𝜑𝐵 ∈ ℕ )
Assertion zmodcld ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 zmodcld.1 ( 𝜑𝐴 ∈ ℤ )
2 zmodcld.2 ( 𝜑𝐵 ∈ ℕ )
3 zmodcl ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℕ0 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℕ0 )