| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmodcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℕ0 ) |
| 2 |
1
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℤ ) |
| 3 |
1
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
| 4 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 5 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 6 |
|
modlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| 8 |
|
0z |
⊢ 0 ∈ ℤ |
| 9 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 11 |
|
elfzm11 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) |
| 12 |
8 10 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) |
| 13 |
2 3 7 12
|
mpbir3and |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ) |